Un equipo internacional en el que ha participado el Instituto de Biología Molecular y Celular de Plantas (IBMCP), centro mixto del CSIC y la Universitat Politècnica de València ha identificado un mecanismo por el que las plantas se adaptan a situaciones de estrés ambiental conflictivas, como la falta de agua y las altas temperaturas. La información fue publicada por SINC.
Se trata de un mecanismo molecular complejo que regula la apertura y el cierre de los estomas, los poros que tienen las plantas en la superficie de las hojas, que se abren para refrigerar a la planta cuando hay calor excesivo o se cierran para evitar la pérdida de agua en condiciones de sequía. El conocimiento de este sistema permitirá obtener cultivos más resistentes a situaciones de estrés ambiental como las que genera el cambio climático.
En estas situaciones, mantener una temperatura óptima de la hoja y evitar una pérdida excesiva de agua son esenciales para un buen rendimiento de la planta. Esto se regula mediante la apertura y el cierre de los estomas, a través de un mecanismo molecular de aceleración y freno, que optimiza el intercambio gaseoso con el ambiente.
“Los mecanismos de los estomas que integran estas señales conflictivas cuando concurren altas temperatura y sequía son aún desconocidos”, reconoce Pedro Rodríguez, profesor de investigación del CSIC en el IBMCP que participa en el estudio que publica la revista Nature Plants, en el que profundizan en el conocimiento de las bases moleculares que permiten la adaptación de la planta a señales conflictivas concurrentes.
El trabajo, liderado por el centro VIB de Biología de Sistemas Vegetales de la Universidad de Gante (Bélgica), identifica una proteína llamada TOT3 que regula la actividad del principal motor celular para la apertura de estomas, la bomba de protones o AHA. Una bomba de protones es una proteína capaz de movilizar protones a través de la membrana de una célula.
“TOT3 promueve la apertura de estomas en condiciones de alta temperatura, para refrigerar la hoja, mediante la activación de AHA”, explica el investigador del CSIC.
“Por otra vía, encontramos la proteína OST1, un actor clave para cerrar estomas en situación de sequía. Cuando coinciden ambos estreses ambientales, OST1 inactiva directamente a TOT3, otorgando primacía a la conservación del agua frente a la regulación de la temperatura de la hoja”, describe Rodríguez.